Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
JTO Clin Res Rep ; 5(2): 100619, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328473

ABSTRACT

Introduction: Targeting the tumor microenvironment may enhance response to immunotherapy (immune checkpoint inhibitors) and improve outcomes for patients. This study tested the safety and efficacy of vorolanib, a novel tyrosine kinase inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and c-KIT, in combination with programmed cell death protein 1 blockade using nivolumab for refractory thoracic malignancies. Methods: This single-arm multicenter study enrolled patients with extensive-stage SCLC, thymic carcinoma, and NSCLC, either naive or had progressed on previous chemotherapy or immune checkpoint inhibitors (either primary or acquired resistance). The primary objective of phase 1 was to determine the maximum tolerated dose, and the primary end point for each dose-expansion cohort was the objective response rate. Results: A total of 88 patients were enrolled in phase 1 (n = 11) and dose expansion (n = 77) cohorts. Transaminitis was dose-limiting and expansion proceeded with oral vorolanib 200 mg daily combined with intravenous nivolumab 240 mg every 2 weeks. The objective response rate per cohort were as follows: NSCLC naive 33% (five of 15, 95% confidence interval [CI]: 13%-60%), NSCLC primary refractory 5.9% (one of 17, 95% CI: 0%-17.6%), NSCLC acquired resistance 11.1% (two of 18, 95% CI: 0%-27.8%); SCLC 0% (zero of 18), and thymic carcinoma 11% (one of nine, 95% CI: 0%-33%). Disease control rate ranged from 11.1% in SCLC (two of 18, 0%-27.8%) to 66.7 % in thymic carcinoma (six of nine, 95% CI: 33.3%-100%). The most common adverse events were fatigue (32%), aspartate transaminase (27%) and alanine transaminase elevation (25%), and diarrhea (19%). Transaminitis was more common in patients with thymic carcinoma than other tumors. Conclusions: Vorolanib plus nivolumab had a manageable safety profile and may have clinical benefits in various thoracic malignancies. The disease control rate in thymic malignancies warrants further assessment.

2.
Lung Cancer ; 186: 107423, 2023 12.
Article in English | MEDLINE | ID: mdl-37995456

ABSTRACT

BACKGROUND: Patients with thoracic malignancies who develop COVID-19 infection have a higher hospitalization rate compared to the general population and to those with other cancer types, but how this outcome differs by race and ethnicity is relatively understudied. METHODS: The TERAVOLT database is an international, multi-center repository of cross-sectional and longitudinal data studying the impact of COVID-19 on individuals with thoracic malignancies. Patients from North America with thoracic malignancies and confirmed COVID-19 infection were included for this analysis of racial and ethnic disparities. Patients with missing race data or races and ethnicities with fewer than 50 patients were excluded from analysis. Multivariable analyses for endpoints of hospitalization and death were performed on these 471 patients. RESULTS: Of the 471 patients, 73% were White and 27% were Black. The majority (90%) were non-Hispanic ethnicity, 5% were Hispanic, and 4% were missing ethnicity data. Black patients were more likely to have an Eastern Cooperative Oncology Group (ECOG) Performance Status ≥ 2 (p-value = 0.04). On multivariable analysis, Black patients were more likely than White patients to require hospitalization (Odds Ratio (OR): 1.69, 95% CI: 1.01-2.83, p-value = 0.044). These differences remained across different waves of the pandemic. However, no statistically significant difference in mortality was found between Black and White patients (OR 1.29, 95% CI: 0.69-2.40, p-value = 0.408). CONCLUSIONS: Black patients with thoracic malignancies who acquire COVID-19 infection are at a significantly higher risk of hospitalization compared to White patients, but there is no significant difference in mortality. The underlying drivers of racial disparity among patients with thoracic malignancies and COVID-19 infection require ongoing investigation.


Subject(s)
COVID-19 , Health Status Disparities , Thoracic Neoplasms , Humans , COVID-19/epidemiology , COVID-19/ethnology , Cross-Sectional Studies , North America/epidemiology , Thoracic Neoplasms/epidemiology , Thoracic Neoplasms/ethnology , White , Black or African American
3.
J Natl Compr Canc Netw ; 21(10): 1050-1057.e13, 2023 10.
Article in English | MEDLINE | ID: mdl-37856197

ABSTRACT

BACKGROUND: More than 50% of patients with lung cancer are admitted to the hospital while receiving treatment, which is a burden to patients and the healthcare system. This study characterizes the risk factors and outcomes of patients with lung cancer who were admitted to the hospital. METHODS: A multidisciplinary oncology care team conducted a retrospective medical record review of patients with lung cancer admitted in 2018. Demographics, disease and admission characteristics, and end-of-life care utilization were recorded. Following a multidisciplinary consensus review process, admissions were determined to be either "avoidable" or "unavoidable." Generalized estimating equation logistic regression models assessed risks and outcomes associated with avoidable admissions. RESULTS: In all, 319 admissions for 188 patients with a median age of 66 years (IQR, 59-74 years) were included. Cancer-related symptoms accounted for 65% of hospitalizations. Common causes of unavoidable hospitalizations were unexpected disease progression causing symptoms, chronic obstructive pulmonary disease exacerbation, and infection. Of the 47 hospitalizations identified as avoidable (15%), the median overall survival was 1.6 months compared with 9.7 months (hazard ratio, 2.07; 95% CI, 1.34-3.19; P<.001) for unavoidable hospitalizations. Significant reasons for avoidable admissions included cancer-related pain (P=.02), hypervolemia (P=.03), patient desire to initiate hospice services (P=.01), and errors in medication reconciliation or distribution (P<.001). Errors in medication management caused 26% of the avoidable hospitalizations. Of admissions in patients receiving immunotherapy (n=102) or targeted therapy (n=44), 9% were due to adverse effects of treatment. Patients receiving immunotherapy and targeted therapy were at similar risk of avoidable hospitalizations compared with patients not receiving treatment (P=.3 and P=.1, respectively). CONCLUSIONS: We found that 15% of hospitalizations among patients with lung cancer were potentially avoidable. Uncontrolled symptoms, delayed implementation of end-of-life care, and errors in medication reconciliation were associated with avoidable inpatient admissions. Symptom management tools, palliative care integration, and medication reconciliations may mitigate hospitalization risk.


Subject(s)
Lung Neoplasms , Humans , Middle Aged , Aged , Lung Neoplasms/epidemiology , Lung Neoplasms/therapy , Retrospective Studies , Hospitalization , Palliative Care , Hospitals
4.
JAMA Oncol ; 9(1): 143-145, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36326735

ABSTRACT

This case series study examines differences in surgical treatment among adult females with invasive breast cancer who have pathogenic or likely pathogenic variants in genes with high vs moderate breast cancer penetrance.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Mastectomy , Genetic Predisposition to Disease
5.
JTO Clin Res Rep ; 3(8): 100335, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35619644

ABSTRACT

Introduction: The Thoracic Centers International coronavirus disease 2019 (COVID-19) Collaboration (TERAVOLT) registry found approximately 30% mortality in patients with thoracic malignancies during the initial COVID-19 surges. Data from South Africa suggested a decrease in severity and mortality with the Omicron wave. Our objective was to assess mortality of patients with thoracic malignancies with the Omicron-predominant wave and evaluate efficacy of vaccination. Methods: A prospective, multicenter observational study was conducted. A total of 28 institutions contributed data from January 14, 2022, to February 4, 2022. Inclusion criteria were any thoracic cancer and a COVID-19 diagnosis on or after November 1, 2021. End points included mortality, hospitalization, symptomatic COVID-19 infection, asymptomatic COVID-19 infection, and delay in cancer therapy. Analysis was done through contingency tables and a multivariable logistic model. Results: We enrolled a total of 346 patients. Median age was 65 years, 52.3% were female, 74.2% were current or former smokers, 86% had NSCLC, 72% had stage IV at time of COVID-19 diagnosis, and 66% were receiving cancer therapy. Variant was unknown for 70%; for those known, Omicron represented 82%. Overall mortality was 3.2%. Using multivariate analysis, COVID-19 vaccination with booster compared with no vaccination had a protective effect on hospitalization or death (OR = 0.30, confidence interval: 0.15-0.57, p = 0.0003), whereas vaccination without booster did not (OR = 0.64, confidence interval: 0.33-1.24, p = 0.1864). Cancer care was delayed in 56.4% of the patients. Conclusions: TERAVOLT found reduced patient mortality with the most recent COVID-19 surge. COVID-19 vaccination with booster improved outcomes of hospitalization or death. Delays in cancer therapy remain an issue, which has the potential to worsen cancer-related mortality.

6.
Clin Colorectal Cancer ; 21(3): 236-243, 2022 09.
Article in English | MEDLINE | ID: mdl-35450836

ABSTRACT

INTRODUCTION: Small bowel adenocarcinomas (SBAs) are rare and frequently treated like large intestinal adenocarcinomas. However, SBAs have a very different microenvironment and could respond differently to the same therapies. Our previous data suggested that SBAs might benefit from targeting the PD-1/PD-L1 axis based on PD-L1 staining in almost 50% of SBA tissue samples tested. Thus, we designed a phase 2 study to explore safety and efficacy of avelumab in SBA. PATIENTS AND METHODS: Patients with advanced or metastatic disease were enrolled; ampullary tumors were considered part of the duodenum and allowed. Prior PD-1/PD-L1 inhibition was not allowed. Avelumab (10 mg/kg) was given every 2 weeks, and imaging was performed every 8 weeks. Primary endpoint was response rate. RESULTS: Eight patients (n = 5, small intestine; n = 3, ampullary) were enrolled, with a majority (88%) being male and a median age of 61 years. Of 7 efficacy-evaluable patients, 2 (29%) experienced partial responses; stable disease occurred in 3 additional patients (71%). Median progression-free survival was 3.35 months. Most frequent, related toxicities were anemia, fatigue, and infusion-related reaction (25% each), mostly grade ≤2; grade 3 hypokalemia and hyponatremia occurred in one patient, and another reported grade 4 diabetic ketoacidosis. CONCLUSIONS: Despite the observed benefit, accrual was slower than expected and the study was closed early due to feasibility. A general clinic observation was that patients were receiving immunotherapy off-label as the availability of these agents increased. Off-label availability and disease rarity were likely drivers of insufficient accrual.


Subject(s)
Adenocarcinoma , B7-H1 Antigen , Adenocarcinoma/drug therapy , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Female , Humans , Intestine, Small , Male , Middle Aged , Programmed Cell Death 1 Receptor , Tumor Microenvironment
7.
Invest New Drugs ; 40(3): 586-595, 2022 06.
Article in English | MEDLINE | ID: mdl-35113285

ABSTRACT

PURPOSE: Sym013 contains six humanized monoclonal antibodies that bind to non-overlapping epitopes on three human epidermal growth factor receptors (HER1-3). Preclinical studies suggested Sym013 strongly suppresses growth of multiple epithelial tumors. This is a first-in-human study exploring safety and efficacy of Sym013 in patients with advanced epithelial malignancies. METHODS: Dose escalation used single-patient cohorts until the stopping rule was met, followed by 3 + 3 design. Dose levels planned were: 1, 2, 4, 6, 9, 12, 15, and 18 mg/kg. Treatment cycles were 28 days with imaging every eight weeks. Serum samples were collected at multiple time points for assessment of pharmacokinetics and development of anti-drug antibodies. RESULTS: Thirty-two patients were enrolled with multiple solid tumors, most common being colorectal cancer (CRC; 10/32, 31%). Due to mucositis, rash, and diarrhea at 4 mg/kg once-weekly, dosing was changed to biweekly (Q2W). Mandatory prophylaxis was added due to Grade 3 infusion-related reaction and oral mucositis at 9 mg/kg Q2W. The 15 mg/kg Q2W cohort was enrolling when the study was terminated for business reasons. Most common adverse events were skin (81%) and gastrointestinal (75%) disorders, including dermatitis/rash, stomatitis, and diarrhea. One patient with CRC achieved a partial response; 12 patients with varied malignancies had stable disease. CONCLUSION: During the conduct of the study, management of frequent infusion-related reactions, skin toxicities, and mucosal disorders, which are indicative of HER inhibition, necessitated multiple protocol amendments. The investigators, in concert with the Sponsor, agreed that achieving a tolerated regimen with acceptable target saturation was unlikely. TRIAL REGISTRY: www. CLINICALTRIALS: gov ; NCT02906670 (September 20, 2016).


Subject(s)
Antineoplastic Agents , Exanthema , Neoplasms, Glandular and Epithelial , Neoplasms , Antibodies, Monoclonal/adverse effects , Antineoplastic Agents/adverse effects , Diarrhea/chemically induced , Exanthema/chemically induced , Humans , Maximum Tolerated Dose , Neoplasms/metabolism , Neoplasms, Glandular and Epithelial/chemically induced , Neoplasms, Glandular and Epithelial/drug therapy
8.
J Thorac Oncol ; 17(5): 661-674, 2022 05.
Article in English | MEDLINE | ID: mdl-35121086

ABSTRACT

INTRODUCTION: Patients with thoracic malignancies are at increased risk for mortality from coronavirus disease 2019 (COVID-19), and a large number of intertwined prognostic variables have been identified so far. METHODS: Capitalizing data from the Thoracic Cancers International COVID-19 Collaboration (TERAVOLT) registry, a global study created with the aim of describing the impact of COVID-19 in patients with thoracic malignancies, we used a clustering approach, a fast-backward step-down selection procedure, and a tree-based model to screen and optimize a broad panel of demographics and clinical COVID-19 and cancer characteristics. RESULTS: As of April 15, 2021, a total of 1491 consecutive eligible patients from 18 countries were included in the analysis. With a mean observation period of 42 days, 361 events were reported with an all-cause case fatality rate of 24.2%. The clustering procedure screened 73 covariates in 13 clusters. A further multivariable logistic regression for the association between clusters and death was performed, resulting in five clusters significantly associated with the outcome. The fast-backward step-down selection procedure then identified the following seven major determinants of death: Eastern Cooperative Oncology Group-performance status (ECOG-PS) (OR = 2.47, 1.87-3.26), neutrophil count (OR = 2.46, 1.76-3.44), serum procalcitonin (OR = 2.37, 1.64-3.43), development of pneumonia (OR = 1.95, 1.48-2.58), C-reactive protein (OR = 1.90, 1.43-2.51), tumor stage at COVID-19 diagnosis (OR = 1.97, 1.46-2.66), and age (OR = 1.71, 1.29-2.26). The receiver operating characteristic analysis for death of the selected model confirmed its diagnostic ability (area under the receiver operating curve = 0.78, 95% confidence interval: 0.75-0.81). The nomogram was able to classify the COVID-19 mortality in an interval ranging from 8% to 90%, and the tree-based model recognized ECOG-PS, neutrophil count, and c-reactive protein as the major determinants of prognosis. CONCLUSIONS: From 73 variables analyzed, seven major determinants of death have been identified. Poor ECOG-PS was found to have the strongest association with poor outcome from COVID-19. With our analysis, we provide clinicians with a definitive prognostication system to help determine the risk of mortality for patients with thoracic malignancies and COVID-19.


Subject(s)
COVID-19 , Lung Neoplasms , Thoracic Neoplasms , C-Reactive Protein , COVID-19 Testing , Humans , Lung Neoplasms/diagnosis , Prognosis , Registries , Retrospective Studies , SARS-CoV-2 , Thoracic Neoplasms/diagnosis
9.
J Pain Symptom Manage ; 63(5): 645-653, 2022 05.
Article in English | MEDLINE | ID: mdl-35081441

ABSTRACT

CONTEXT: The optimal strategy for implementing mortality-predicting algorithms to facilitate clinical care, prognostic discussions, and palliative care interventions remains unknown. OBJECTIVES: To develop and validate a real-time predictive model for 180 day mortality using routinely available clinical and laboratory admission data and determine if palliative care exposure varies with predicted mortality risk. METHODS: Adult admissions between October 1, 2013 and October.1, 2017 were included for the model derivation. A separate cohort was collected between January 1, 2018 and July 31, 2020 for validation. Patients were followed for 180 days from discharge, and logistic regression with selected variables was used to estimate patients' risk for mortality. RESULTS: In the model derivation cohort, 7963 events of 180 day mortality (4.5% event rate) were observed. Median age was 53.0 (IQR 24.0-66.0) with 92,734 females (52.5%). Variables with strongest association with 180 day mortality included: Braden Score (OR 0.83; 95% CI 0.82-0.84); admission Do Not Resuscitate orders (OR 2.61; 95% CI 2.43-2.79); admission service and admission status. The model yielded excellent discriminatory ability in both the derivation (c-statistic 0.873; 95% CI 0.870-0.877; Brier score 0.04) and validation cohorts (c-statistic 0.844; 95% CI 0.840-0.847; Brier score 0.072). Inpatient palliative care consultations increased from 3% of minimal-risk encounters to 41% of high-risk encounters (P < 0.01). CONCLUSION: We developed and temporally validated a predictive mortality model for adults from a large retrospective cohort, which helps quantify the potential need for palliative care referrals based on risk strata. Machine learning algorithms for mortality require clinical interpretation, and additional studies are needed to design patient-centered and risk-specific interventions.


Subject(s)
Machine Learning , Palliative Care , Adult , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment
10.
J Nucl Med ; 63(1): 36-43, 2022 01.
Article in English | MEDLINE | ID: mdl-33931465

ABSTRACT

Altered metabolism is a hallmark of cancer. In addition to glucose, glutamine is an important nutrient for cellular growth and proliferation. Noninvasive imaging via PET may help facilitate precision treatment of cancer through patient selection and monitoring of treatment response. l-[5-11C]-glutamine (11C-glutamine) is a PET tracer designed to study glutamine uptake and metabolism. The aim of this first-in-human study was to evaluate the radiologic safety and biodistribution of 11C-glutamine for oncologic PET imaging. Methods: Nine patients with confirmed metastatic colorectal cancer underwent PET/CT imaging. Patients received 337.97 ± 44.08 MBq of 11C-glutamine. Dynamic PET acquisitions that were centered over the abdomen or thorax were initiated simultaneously with intravenous tracer administration. After the dynamic acquisition, a whole-body PET/CT scan was acquired. Volume-of-interest analyses were performed to obtain estimates of organ-based absorbed doses of radiation. Results:11C-glutamine was well tolerated in all patients, with no observed safety concerns. The organs with the highest radiation exposure included the bladder, pancreas, and liver. The estimated effective dose was 4.46E-03 ± 7.67E-04 mSv/MBq. Accumulation of 11C-glutamine was elevated and visualized in lung, brain, bone, and liver metastases, suggesting utility for cancer imaging. Conclusion: PET using 11C-glutamine appears safe for human use and allows noninvasive visualization of metastatic colon cancer lesions in multiple organs. Further studies are needed to elucidate its potential for other cancers and for monitoring response to treatment.


Subject(s)
Glutamine
11.
BMC Cancer ; 21(1): 1262, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34814868

ABSTRACT

BACKGROUND: Despite lower cancer incidence rates, cancer mortality is higher among rural compared to urban dwellers. Patient, provider, and institutional level factors contribute to these disparities. The overarching objective of this study is to leverage the multidisciplinary, multispecialty oncology team from an academic cancer center in order to provide comprehensive cancer care at both the patient and provider levels in rural healthcare centers. Our specific aims are to: 1) evaluate the clinical effectiveness of a multi-level telehealth-based intervention consisting of provider access to molecular tumor board expertise along with patient access to a supportive care intervention to improve cancer care delivery; and 2) identify the facilitators and barriers to future larger scale dissemination and implementation of the multi-level intervention. METHODS: Coordinated by a National Cancer Institute-designated comprehensive cancer center, this study will include providers and patients across several clinics in two large healthcare systems serving rural communities. Using a telehealth-based molecular tumor board, sequencing results are reviewed, predictive and prognostic markers are discussed, and treatment plans are formulated between expert oncologists and rural providers. Simultaneously, the rural patients will be randomized to receive an evidence-based 6-week self-management supportive care program, Cancer Thriving and Surviving, versus an education attention control. Primary outcomes will be provider uptake of the molecular tumor board recommendation and patient treatment adherence. A mixed methods approach guided by the Consolidated Framework for Implementation Research that combines qualitative key informant interviews and quantitative surveys will be collected from both the patient and provider in order to identify facilitators and barriers to implementing the multi-level intervention. DISCUSSION: The proposed study will leverage information technology-enabled, team-based care delivery models in order to deliver comprehensive, coordinated, and high-quality cancer care to rural and/or underserved populations. Simultaneous attention to institutional, provider, and patient level barriers to quality care will afford the opportunity for us to broadly share oncology expertise and develop dissemination and implementation strategies that will enhance the cancer care delivered to patients residing within underserved rural communities. TRIAL REGISTRATION: Clinicaltrials.gov , NCT04758338 . Registered 17 February 2021 - Retrospectively registered, http://www.clinicaltrials.gov/.


Subject(s)
Health Services Accessibility , Neoplasms/genetics , Neoplasms/therapy , Rural Health , Rural Population , Telemedicine , Adult , Cancer Care Facilities , Hospitals, Rural , Humans , Informed Consent , Medically Underserved Area , Patient Compliance , Patient Education as Topic , Quality Improvement , Self-Management , Telemedicine/methods , Telemedicine/organization & administration , Telemedicine/standards , United States
12.
BMC Cancer ; 21(1): 1099, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34645413

ABSTRACT

BACKGROUND: Implementing genetic testing for inherited cancer predisposition into routine clinical care offers a tremendous opportunity for cancer prevention and early detection. However, genetic testing itself does not improve outcomes; rather, outcomes depend on implemented follow-up care. The IMPACT study is a hybrid type I randomized effectiveness-implementation trial to simultaneously evaluate the effectiveness of two interventions for individuals with inherited cancer predisposition focused on: 1) increasing family communication (FC) of genetic test results; and 2) improving engagement with guideline-based cancer risk management (CRM). METHODS: This prospective study will recruit a racially, geographically, and socioeconomically diverse population of individuals with a documented pathogenic/likely pathogenic (P/LP) variant in an inherited cancer gene. Eligible participants will be asked to complete an initial trial survey and randomly assigned to one of three arms: A) GeneSHARE, a website designed to increase FC of genetic test results; B) My Gene Counsel's Living Lab Report, a digital tool designed to improve understanding of genetic test results and next steps, including CRM guidelines; or C) a control arm in which participants continue receiving standard care. Follow-up surveys will be conducted at 1, 3, and 12 months following randomization. These surveys include single-item measures, scales, and indices related to: 1) FC and CRM behaviors and behavioral factors following the COM-B theoretical framework (i.e., capability, opportunity, and motivation); 2) implementation outcomes (i.e., acceptability, appropriateness, exposure, and reach); and 3) other contextual factors (i.e., sociodemographic and clinical factors, and uncertainty, distress, and positive aspects of genetic test results). The primary outcomes are an increase in FC of genetic test results (Arm A) and improved engagement with guideline-based CRM without overtreatment or undertreatment (Arm B) by the 12-month follow-up survey. DISCUSSION: Our interventions are designed to shift the paradigm by which individuals with P/LP variants in inherited cancer genes are provided with information to enhance FC of genetic test results and engagement with guideline-based CRM. The information gathered through evaluating the effectiveness and implementation of these real-world approaches is needed to modify and scale up adaptive, stepped interventions that have the potential to maximize FC and CRM. TRIAL REGISTRATION: This study is registered at Clinicaltrials.gov (NCT04763915, date registered: February 21, 2021). PROTOCOL VERSION: September 17th, 2021 Amendment Number 04.


Subject(s)
Communication , Genetic Testing , Neoplasms/diagnosis , Neoplasms/genetics , Truth Disclosure , Adult , Early Detection of Cancer/methods , Female , Genetic Predisposition to Disease , Humans , Male , Neoplasms/prevention & control , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/prevention & control , Prospective Studies , Risk
13.
JAMA Oncol ; 7(12): 1882-1890, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34473192

ABSTRACT

Importance: The COVID-19 pandemic has had consequences for patients with cancer worldwide and has been associated with delays in diagnosis, interruption of treatment and follow-up care, and increases in overall infection rates and premature mortality. Observations: Despite the challenges experienced during the pandemic, the global oncology community has responded with an unprecedented level of investigation, collaboration, and technological innovation through the rapid development of COVID-19 registries that have allowed an increased understanding of the natural history, risk factors, and outcomes of patients with cancer who are diagnosed with COVID-19. This review describes 14 major registries comprising more than 28 500 patients with cancer and COVID-19; these ongoing registry efforts have provided an improved understanding of the impact and outcomes of COVID-19 among patients with cancer. Conclusions and Relevance: An initiative is needed to promote active collaboration between different registries to improve the quality and consistency of information. Well-designed prospective and randomized clinical trials are needed to collect high-level evidence to guide long-term epidemiologic, behavioral, and clinical decision-making for this and future pandemics.


Subject(s)
COVID-19 , Neoplasms , Pandemics , Registries , COVID-19/epidemiology , COVID-19/therapy , Humans , Neoplasms/epidemiology , Neoplasms/therapy
14.
JAMA Oncol ; 7(11): 1617-1625, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34473194

ABSTRACT

IMPORTANCE: Ensartinib, an oral tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), has shown systemic and central nervous system efficacy for patients with ALK-positive non-small cell lung cancer (NSCLC). OBJECTIVE: To compare ensartinib with crizotinib among patients with advanced ALK-positive NSCLC who had not received prior treatment with an ALK inhibitor. DESIGN, SETTING, AND PARTICIPANTS: This open-label, multicenter, randomized, phase 3 trial conducted in 120 centers in 21 countries enrolled 290 patients between July 25, 2016, and November 12, 2018. Eligible patients were 18 years of age or older and had advanced, recurrent, or metastatic ALK-positive NSCLC. INTERVENTIONS: Patients were randomized (1:1) to ensartinib, 225 mg once daily, or crizotinib, 250 mg twice daily. MAIN OUTCOMES AND MEASURES: The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Secondary end points included systemic and intracranial response, time to central nervous system progression, and overall survival. Efficacy was evaluated in the intent-to-treat (ITT) population as well as a prespecified modified ITT (mITT) population consisting of patients with central laboratory-confirmed ALK-positive NSCLC. RESULTS: A total of 290 patients (149 men [51.4%]; median age, 54 years [range, 25-90 years]) were randomized. In the ITT population, the median PFS was significantly longer with ensartinib than with crizotinib (25.8 [range, 0.03-44.0 months] vs 12.7 months [range, 0.03-38.6 months]; hazard ratio, 0.51 [95% CI, 0.35-0.72]; log-rank P < .001), with a median follow-up of 23.8 months (range, 0-44 months) for the ensartinib group and 20.2 months (range, 0-38 months) for the crizotinib group. In the mITT population, the median PFS in the ensartinib group was not reached, and the median PFS in the crizotinib group was 12.7 months (95% CI, 8.9-16.6 months; hazard ratio, 0.45; 95% CI, 0.30-0.66; log-rank P < .001). The intracranial response rate confirmed by a blinded independent review committee was 63.6% (7 of 11) with ensartinib vs 21.1% (4 of 19) with crizotinib for patients with target brain metastases at baseline. Progression-free survival for patients without brain metastases was not reached with ensartinib vs 16.6 months with crizotinib as a result of a lower central nervous system progression rate (at 12 months: 4.2% with ensartinib vs 23.9% with crizotinib; cause-specific hazard ratio, 0.32; 95% CI, 0.16-0.63; P = .001). Frequencies of treatment-related serious adverse events (ensartinib: 11 [7.7%] vs crizotinib: 9 [6.1%]), dose reductions (ensartinib: 34 of 143 [23.8%] vs crizotinib: 29 of 146 [19.9%]), or drug discontinuations (ensartinib: 13 of 143 [9.1%] vs crizotinib: 10 of 146 [6.8%]) were similar, without any new safety signals. CONCLUSIONS AND RELEVANCE: In this randomized clinical trial, ensartinib showed superior efficacy to crizotinib in both systemic and intracranial disease. Ensartinib represents a new first-line option for patients with ALK-positive NSCLC. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02767804.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adolescent , Adult , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/pathology , Crizotinib/adverse effects , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Piperazines , Protein Kinase Inhibitors/adverse effects , Pyridazines
15.
J Breast Imaging ; 3(1): 44-56, 2021.
Article in English | MEDLINE | ID: mdl-33543122

ABSTRACT

OBJECTIVE: The A6702 multisite trial confirmed that apparent diffusion coefficient (ADC) measures can improve breast MRI accuracy and reduce unnecessary biopsies, but also found that technical issues rendered many lesions non-evaluable on diffusion-weighted imaging (DWI). This secondary analysis investigated factors affecting lesion evaluability and impact on diagnostic performance. METHODS: The A6702 protocol was IRB-approved at 10 institutions; participants provided informed consent. In total, 103 women with 142 MRI-detected breast lesions (BI-RADS assessment category 3, 4, or 5) completed the study. DWI was acquired at 1.5T and 3T using a four b-value, echo-planar imaging sequence. Scans were reviewed for multiple quality factors (artifacts, signal-to-noise, misregistration, and fat suppression); lesions were considered non-evaluable if there was low confidence in ADC measurement. Associations of lesion evaluability with imaging and lesion characteristics were determined. Areas under the receiver operating characteristic curves (AUCs) were compared using bootstrapping. RESULTS: Thirty percent (42/142) of lesions were non-evaluable on DWI; 23% (32/142) with image quality issues, 7% (10/142) with conspicuity and/or localization issues. Misregistration was the only factor associated with non-evaluability (P = 0.001). Smaller (≤10 mm) lesions were more commonly non-evaluable than larger lesions (p <0.03), though not significant after multiplicity correction. The AUC for differentiating benign and malignant lesions increased after excluding non-evaluable lesions, from 0.61 (95% CI: 0.50-0.71) to 0.75 (95% CI: 0.65-0.84). CONCLUSION: Image quality remains a technical challenge in breast DWI, particularly for smaller lesions. Protocol optimization and advanced acquisition and post-processing techniques would help to improve clinical utility.

16.
Radiology ; 298(1): 60-70, 2021 01.
Article in English | MEDLINE | ID: mdl-33201788

ABSTRACT

Background The Eastern Cooperative Oncology Group and American College of Radiology Imaging Network Cancer Research Group A6702 multicenter trial helped confirm the potential of diffusion-weighted MRI for improving differential diagnosis of suspicious breast abnormalities and reducing unnecessary biopsies. A prespecified secondary objective was to explore the relative value of different approaches for quantitative assessment of lesions at diffusion-weighted MRI. Purpose To determine whether alternate calculations of apparent diffusion coefficient (ADC) can help further improve diagnostic performance versus mean ADC values alone for analysis of suspicious breast lesions at MRI. Materials and Methods This prospective trial (ClinicalTrials.gov identifier: NCT02022579) enrolled consecutive women (from March 2014 to April 2015) with a Breast Imaging Reporting and Data System category of 3, 4, or 5 at breast MRI. All study participants underwent standardized diffusion-weighted MRI (b = 0, 100, 600, and 800 sec/mm2). Centralized ADC measures were performed, including manually drawn whole-lesion and hotspot regions of interest, histogram metrics, normalized ADC, and variable b-value combinations. Diagnostic performance was estimated by using the area under the receiver operating characteristic curve (AUC). Reduction in biopsy rate (maintaining 100% sensitivity) was estimated according to thresholds for each ADC metric. Results Among 107 enrolled women, 81 lesions with outcomes (28 malignant and 53 benign) in 67 women (median age, 49 years; interquartile range, 41-60 years) were analyzed. Among ADC metrics tested, none improved diagnostic performance versus standard mean ADC (AUC, 0.59-0.79 vs AUC, 0.75; P = .02-.84), and maximum ADC had worse performance (AUC, 0.52; P < .001). The 25th-percentile ADC metric provided the best performance (AUC, 0.79; 95% CI: 0.70, 0.88), and a threshold using median ADC provided the greatest reduction in biopsy rate of 23.9% (95% CI: 14.8, 32.9; 16 of 67 BI-RADS category 4 and 5 lesions). Nonzero minimum b value (100, 600, and 800 sec/mm2) did not improve the AUC (0.74; P = .28), and several combinations of two b values (0 and 600, 100 and 600, 0 and 800, and 100 and 800 sec/mm2; AUC, 0.73-0.76) provided results similar to those seen with calculations of four b values (AUC, 0.75; P = .17-.87). Conclusion Mean apparent diffusion coefficient calculated with a two-b-value acquisition is a simple and sufficient diffusion-weighted MRI metric to augment diagnostic performance of breast MRI compared with more complex approaches to apparent diffusion coefficient measurement. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Breast/diagnostic imaging , Diagnosis, Differential , Female , Humans , Middle Aged , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Societies, Medical , Young Adult
17.
JCI Insight ; 5(22)2020 11 19.
Article in English | MEDLINE | ID: mdl-33208553

ABSTRACT

BACKGROUNDSurgery remains the frontline therapy for patients with localized clear cell renal cell carcinoma (ccRCC); however, 20%-40% recur. Angiogenesis inhibitors have improved survival in metastatic patients and may result in responses in the neoadjuvant setting. The impact of these agents on the tumor genetic heterogeneity or the immune milieu is largely unknown. This phase II study was designed to evaluate safety, response, and effect on tumor tissue of neoadjuvant pazopanib.METHODSccRCC patients with localized disease received pazopanib (800 mg daily; median 8 weeks), followed by nephrectomy. Five tumors were examined for mutations by whole exome sequencing from samples collected before therapy and at nephrectomy. These samples underwent RNA sequencing; 17 samples were available for posttreatment assessment.RESULTSTwenty-one patients were enrolled. The overall response rate was 8 of 21 (38%). No patients with progressive disease. At 1-year, response-free survival and overall survival was 83% and 89%, respectively. The most frequent grade 3 toxicity was hypertension (33%, 7 of 21). Sequencing revealed strong concordance between pre- and posttreatment samples within individual tumors, suggesting tumors harbor stable core profiles. However, a reduction in private mutations followed treatment, suggesting a selective process favoring enrichment of driver mutations.CONCLUSIONNeoadjuvant pazopanib is safe and active in ccRCC. Future genomic analyses may enable the segregation of driver and passenger mutations. Furthermore, tumor infiltrating immune cells persist during therapy, suggesting that pazopanib can be combined with immune checkpoint inhibitors without dampening the immune response.FUNDINGSupport was provided by Novartis and GlaxoSmithKline as part of an investigator-initiated study.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/pathology , Indazoles/therapeutic use , Kidney Neoplasms/pathology , Neoadjuvant Therapy/mortality , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Transcriptome/drug effects , Adult , Aged , Angiogenesis Inhibitors/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Case-Control Studies , Female , Follow-Up Studies , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate
18.
Cancer Cell ; 38(5): 602-604, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33091381

ABSTRACT

To understand the real impact of COVID-19 on cancer patients, an entirely new data collection effort was initiated within the Thoracic Cancers International COVID-19 Collaboration (TERAVOLT). TERAVOLT reported high mortality related to COVID-19 infection in thoracic cancer patients and identified several negative prognostic factors. In this commentary, we discuss the importance and limits of patient registries to support decision-making in thoracic cancer during the SARS-CoV-2 pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Decision-Making , Coronavirus Infections/complications , Global Burden of Disease/standards , Pneumonia, Viral/complications , Practice Guidelines as Topic/standards , Thoracic Neoplasms/therapy , COVID-19 , Coronavirus Infections/virology , Humans , International Cooperation , Pandemics , Pneumonia, Viral/virology , Registries , SARS-CoV-2 , Thoracic Neoplasms/epidemiology , Thoracic Neoplasms/virology
19.
Cancers (Basel) ; 12(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599906

ABSTRACT

This study identifies physiological tumor habitats from quantitative magnetic resonance imaging (MRI) data and evaluates their alterations in response to therapy. Two models of breast cancer (BT-474 and MDA-MB-231) were imaged longitudinally with diffusion-weighted MRI and dynamic contrast-enhanced MRI to quantify tumor cellularity and vascularity, respectively, during treatment with trastuzumab or albumin-bound paclitaxel. Tumors were stained for anti-CD31, anti-Ki-67, and H&E. Imaging and histology data were clustered to identify tumor habitats and percent tumor volume (MRI) or area (histology) of each habitat was quantified. Histological habitats were correlated with MRI habitats. Clustering of both the MRI and histology data yielded three clusters: high-vascularity high-cellularity (HV-HC), low-vascularity high-cellularity (LV-HC), and low-vascularity low-cellularity (LV-LC). At day 4, BT-474 tumors treated with trastuzumab showed a decrease in LV-HC (p = 0.03) and increase in HV-HC (p = 0.03) percent tumor volume compared to control. MDA-MB-231 tumors treated with low-dose albumin-bound paclitaxel showed a longitudinal decrease in LV-HC percent tumor volume at day 3 (p = 0.01). Positive correlations were found between histological and imaging-derived habitats: HV-HC (BT-474: p = 0.03), LV-HC (MDA-MB-231: p = 0.04), LV-LC (BT-474: p = 0.04; MDA-MB-231: p < 0.01). Physiologically distinct tumor habitats associated with therapeutic response were identified with MRI and histology data in preclinical models of breast cancer.

20.
Tomography ; 6(2): 170-176, 2020 06.
Article in English | MEDLINE | ID: mdl-32548293

ABSTRACT

Positron emission tomography (PET) is typically performed in the supine position. However, breast magnetic resonance imaging (MRI) is performed in prone, as this improves visibility of deep breast tissues. With the emergence of hybrid scanners that integrate molecular information from PET and functional information from MRI, it is of great interest to determine if the prognostic utility of prone PET is equivalent to supine. We compared PERCIST (PET Response Criteria in Solid Tumors) measurements between prone and supine FDG-PET in patients with breast cancer and the effect of orientation on predicting pathologic complete response (pCR). In total, 47 patients were enrolled and received up to 6 cycles of neoadjuvant therapy. Prone and supine FDG-PET were performed at baseline (t0 ; n = 46), after cycle 1 (t1 ; n = 1) or 2 (t2 ; n = 10), or after all neoadjuvant therapy (t3 ; n = 19). FDG uptake was quantified by maximum and peak standardized uptake value (SUV) with and without normalization to lean body mass; that is, SUVmax , SUVpeak , SULmax , and SULpeak . PERCIST measurements were performed for each paired baseline and post-treatment scan. Receiver operating characteristic analysis for the prediction of pCR was performed using logistic regression that included age and tumor size as covariates. SUV and SUL metrics were significantly different between orientation (P < .001), but were highly correlated (P > .98). Importantly, no differences were observed with the PERCIST measurements (P > .6). Overlapping 95% confidence intervals for the receiver operating characteristic analysis suggested no difference at predicting pCR. Therefore, prone and supine PERCIST in this data set were not statistically different.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Female , Humans , Radiopharmaceuticals , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...